Scaled particle theory for hard sphere pairs. II. Numerical analysis
نویسندگان
چکیده
منابع مشابه
Scaled particle theory for hard sphere pairs. II. Numerical analysis.
We use the extension of scaled particle theory presented in the accompanying paper [F. H. Stillinger et al., J. Chem. Phys. 125, 204504 (2006)] to calculate numerically the pair correlation function of the hard sphere fluid over the density range 0< or =rhosigma(3)< or =0.96. Comparison with computer simulation results reveals that the new theory is able to capture accurately the fluid's struct...
متن کاملA ug 2 00 6 Scaled Particle Theory for Hard Sphere Pairs . II . Numerical Analysis
Abstract We use the extension of scaled particle theory (ESPT) presented in the accompanying paper [Stillinger et al. J. Chem. Phys. xxx, xxx (2007)] to calculate numerically pair correlation function of the hard sphere fluid over the density range 0 ≤ ρσ ≤ 0.96. Comparison with computer simulation results reveals that the new theory is able to capture accurately the fluid’s structure across th...
متن کاملScaled particle theory for hard sphere pairs. I. Mathematical structure.
We develop an extension of the original Reiss-Frisch-Lebowitz scaled particle theory that can serve as a predictive method for the hard sphere pair correlation function g(r). The reversible cavity creation work is analyzed both for a single spherical cavity of arbitrary size, as well as for a pair of identical such spherical cavities with variable center-to-center separation. These quantities l...
متن کاملTagged-particle dynamics in a hard-sphere system: mode-coupling theory analysis.
The predictions of the mode-coupling theory of the glass transition (MCT) for the tagged-particle density-correlation functions and the mean-squared displacement curves are compared quantitatively and in detail to results from Newtonian- and Brownian-dynamics simulations of a polydisperse quasi-hard-sphere system close to the glass transition. After correcting for a 17% error in the dynamical l...
متن کاملLennard-Jones Energy Parameter for Pure Fluids from Scaled Particle Theory
By considering the fact that the surface tension of a real fluid arises from a combination of both repulsive and attractive forces between molecules, a new expression for the interfacial tension has been derived from scaled particle theory (SPT) based on the work of cavity formation and the interaction energy between molecules. At the critical temperature, the interfacial tension between c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Chemical Physics
سال: 2006
ISSN: 0021-9606,1089-7690
DOI: 10.1063/1.2374890